International Open Access Journal Platform

logo
open
cover
Current Views: 504690
Current Downloads: 386828

Progress in Social Sciences

ISSN Print: 2664-6943
ISSN Online: 2664-6951
Contact Editorial Office
Join Us
DATABASE
SUBSCRIBE
Journal index
Journal
Your email address

生成式AI在服务业营销场景的应用特征与挑战

Application Characteristics and Challenges of Generative AI in Service Industry Marketing Scenarios

Progress in Social Sciences / 2025,7(7): 566-572 / 2025-07-30 look31 look19
  • Authors: 曾育新 覃艳华 陈纯炼
  • Information:
    电子科技大学中山学院管理学院,中山
  • Keywords:
    Generative artificial intelligence (AIGC); Service marketing; Human-AI collaboration; Cultural adaptation; LEAF model; Data security; Empathy gap; Value co-creation
    生成式人工智能(AIGC); 服务营销; 人机协同; 文化自适应; LEAF模型; 数据安全; 共情鸿沟; 价值共创
  • Abstract: Generative Artificial Intelligence (AIGC) is profoundly reshaping the value creation paradigm in service marketing. Grounded in Service-Dominant Logic (S-D Logic), this study systematically analyzes AIGC’s application characteristics across three core service marketing scenarios: Intelligent Interaction: Constructing a human-AI-customer triadic collaboration system (Guo, 2025) to enable seamless service delivery. Content Creation: Achieving scalable personalized service (Bai & Guo, 2024) through dynamic content generation. Customer Insight: Empowering data-driven decision-making for precision marketing. These applications significantly enhance marketing efficiency, personalization, and experiential quality. Concurrently, the study identifies critical inherent tensions in localized AIGC implementation: Technology-Trust Tension: Data security risks and algorithmic black-box opacity undermining accountability (Zhang & Chen, 2025; Chen & Li, 2025). Efficiency-Empathy Tension: The “empathy gap” in human-AI interaction, particularly detrimental in high-touch service recovery scenarios (Li & Zheng, 2024). Globalization-Localization Tension: Cultural misfit due to inadequate adaptation of global models to local contexts (e.g., Chinese cultural nuances) (Wang & Wang, 2025). To address these challenges, we propose the innovative Lightweight-Embedded-Adaptive-Forward-feeding (LEAF) Model: Lightweight Technology (L): Prioritizing API integration (e.g., Baidu, Alibaba, Tencent, DeepSeek) for cost-effective access. Embedded Processes (E): Structuring workflows (e.g., “AI triage + human expert”, “AI draft + human refinement”) for genuine human-AI collaboration. Adaptive Culture (A): Implementing prompt engineering and localized fine-tuning to embed cultural intelligence. Forward-feeding Mechanism (F): Establishing a data-driven feedback loop (collection → structuring → model optimization) for continuous improvement. The LEAF model provides a strategic pathway for local service enterprises, especially resource-constrained SMEs, to implement AIGC responsibly, efficiently, and cost-effectively, offering significant theoretical and practical contributions. 生成式人工智能(AIGC)正深刻重构服务业营销的价值创造范式。本文基于服务主导逻辑(S-DLogic),系统分析AIGC在智能交互、内容创生与客户洞察三大核心场景的应用特征:通过构建“人—机—客”三元协同体系(郭蕾蕾,2025)、实现规模化个性化服务(白雪梅,郭日发,2024)、赋能数据驱动决策,显著提升营销效率与体验。同时,深入剖析本土化应用的内在张力:技术与信任矛盾(数据安全与算法黑箱风险)(张亮,陈希聪,2025;陈嘉鑫,李宝诚,2025)、效率与情感冲突(“共情鸿沟”)(李森,郑岚,2024)、全球化与本土化失衡(文化适配性缺失)(王闻萱,王丹,2025)。针对挑战,创新性提出“服务营销AI轻量化敏捷(LEAF)模型”,以技术轻量化(L)控制成本、流程嵌入化(E)协同人机、文化自适应(A)弥合文化差异、反馈前馈化(F)驱动动态优化。该模型为本土服务业企业(尤其中小企业)提供了低成本、高效率、负责任的AIGC战略实施路径,兼具理论创新与实践指导价值。
  • DOI: https://doi.org/10.35534/pss.0707096
  • Cite: 曾育新,覃艳华,陈纯炼.生成式AI在服务业营销场景的应用特征与挑战[J].社会科学进展,2025,7(7):566-572.
Already have an account?
+86 027-59302486
Top