Abstract:
Based on multi-degree-of-freedom impact oscillators with clearances ,
equations for the system away from impact and complicated impact situation and
corresponding impact governing equations, with Runge-Kutta method to numerical
simulation, the paper reveals that systems have complex chaotic motions. Theoretical
analysis shows that delay feedback control can control system validity, phase plane
portrait and time series also display that this method can control chaotic impact
motions operative to periodic orbits.
在一类含间隙多自由度动力系统的力学模型的基础上,根据系统在无
碰撞情况下的无量纲微分方程和相应的无量纲冲击方程,利用龙格—库塔数值
仿真方法揭示了系统存在复杂的混沌运动行为。理论分析了延迟反馈方法对混
沌控制的有效性,相图和时间历程图均表明该方法能将系统的混沌行为有效地
控制到周期轨道。